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KEY FINDINGS

* Marine bony fishes acclimated to seawater with lower Mg/Ca ratios and
S04 concentrations produce 3x more ichthyocarbonate, with lower
mol%MgCQOs3, and slower dissolution rates than fishes acclimated to modern

seawater

» During Greenhouse periods, marine fishes may have been even more
important contributors to the global carbon cycle than they are today

INTRODUCTION

Marine bony fishes are prolific producers of carbonate minerals in the oceans
each year, because they drink seawater to stay hydrated (Wilson et al., 2009;

Grosell and Oehlert,
2023). Produced in the
intestine of all marine

bony fishes studied to

date, magnesium-rich
carbonate minerals called
ichthyocarbonate are
excreted to the
environment nearly
continuously. The
formation of these
precipitates facilitates
water absorption and
ensures that marine

fishes do not suffer from
dehydration in the marine
environment (Grosell,
2002). The production of

ichthyocarbonate by
modern marine fish
populations  contributes

substantially to the global
inorganic carbon cycle,
with estimates suggesting
that ichthyocarbonate
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Figure 1. Changing seawater Mg/Ca ratios throughout
the Phanerozoic, as well as major milestones in marine
bony fish evolution.
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constitutes 3-33% of new carbonate production in the oceans each year (Wilson
et al., 2009; Oehlert et al., 2024a). Research has shown that ichthyocarbonate
produced in the marine environment today is composed of carbonate polymorphs
including high magnesium calcite (HMC), very high magnesium calcite (vHMC),
amorphous calcium magnesium carbonate (ACMC), and minor occurrences of
aragonite, brucite or low magnesium calcite (LMC; Salter et al., 2017). Such
heterogeneity in carbonate phase composition and high solubility of
ichthyocarbonate (Woosley et al., 2012) suggests that ichthyocarbonate is
unlikely to accumulate in significant quantities outside of shallow, tropical marine
sedimentary environments in modern settings (Perry et al., 2011). However,
relatively little information exists about how the composition and sedimentary
preservation potential of ichthyocarbonate produced by marine bony fishes may
have changed since their evolution more than 400 million years ago (Zhu et al.,
2009). Secular changes in seawater chemistry have occurred throughout the
Phanerozoic, resulting in mineralogical changes in the composition of inorganic
cements precipitated through time. At least three transitions between Aragonite
and Calcite Seas have occurred since the rise of marine bony fishes (Fig. 1),
indicating that marine fishes have been able to adapt their osmoregulatory
strategy, including the production of ichthyocarbonate, to changing seawater
chemistry.

DATASET AND METHODS

We evaluated the effects of changing the Mg/Ca ratios and SO4?" concentrations
in seawater by acclimating Gulf toadfish (Opsanus beta) to seawater conditions
simulating Mesozoic Greenhouse conditions (Mg/Ca ratios less than 1, and 3x
lower S042° concentrations). In this study, we determined ichthyocarbonate
excretion rates by measuring the mass of ichthyocarbonate in tanks daily.
Mol%MgCOs was assessed using ICP-QQQ, dissolution rate was measured using
a pH-stat approach, total organic carbon content assessed using an elemental
analyzer coupled with a continuous flow IRMS, and crystallite morphology
assessed using a field emission scanning electron microscope as previously
conducted (Folkerts et al., 2024; Grosell et al., 2025).

RESULTS AND INTERPRETATION

Gulf toadfish acclimated to Mesozoic seawater conditions were found to produce
3.6x more ichthyocarbonate than toadfish acclimated to modern seawater (p
<0.001). Fish acclimated to Mesozoic seawater produced ichthyocarbonate with
significantly lower mol%MgCOs (12.4 £ 0.2%) and slower dissolution rates (81.8
uneqgv. gt h'l) compared to ichthyocarbonate produced by toadfish acclimated to
modern seawater (30.6+ 0.2% and 244.2 peqv. g! h'l, respectively, Fig. 2). In
addition, total organic carbon associated with ichthyocarbonate produced by
modern fishes (10.1 + 6.5%) was higher than that found in ichthyocarbonate
produced by fishes acclimated to Mesozoic seawater conditions (5.8 £ 3.3%, p =
0.04). The fraction of total rectal base excretion that was found in solid phase
versus dissolved bicarbonate also varied significantly between Modern-acclimated
and Cretaceous-acclimated fishes (p = 0.01), with Cretaceous-acclimated fishes
producing substantially greater quantities of solid phase base excretions (e.g.
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ichthyocarbonate, 29 * 8%) than modern-acclimated fishes (7 £+ 3%).
Preliminary results suggest that the morphology of crystallites in
ichthyocarbonate collected from the intestine of fishes in both treatments was
similar, and overall particle size may be smaller for ichthyocarbonate excreted by
fish acclimated to Cretaceous seas (1.55 mm, n =202) than Modern seas (1.98
mm, n = 61).

40T 400 | EModern
35+ . [[ICretaceous
m 30+ o 300+
S 5.
251 €L 250
S . | Lo :
S 20+ * = > 200 +
e | 59 | *
15+ w2 150 1 T
L e} '5 [
10+ 100+
t : S
5eF ° 50 + 9
L J
0+ 0-+
n=14 n=17 n=5 h=5

Figure 2. Mol%MgCQO:s (left) and dissolution rate (right) of ichthyocarbonate produced
by Gulf toadfish acclimated to Modern seawater chemistry (blue) and Mesozoic
seawater chemistry (yellow).

SIGNIFICANCE

Increased production rates coupled with decreased mol%MgCOs3 and dissolution
rates of ichthyocarbonate produced by fishes acclimated to conditions simulating
Mesozoic seawater suggests that ichthyocarbonate produced during the
Cretaceous likely deposited in the sediments. Similar crystallite morphology
observed in intestinal precipitates suggests that the intestinal physiology
responsible for morphology is conserved. Increased sea water temperature,
which is proposed to shift the distribution of global fish biomass polewards
(Jennings et al., 2008) and potentially result in smaller fishes (Cheung et al.,
2013), and increased pCO;, which has been shown to enhanced base excretion
by 34% (Heuer et al., 2012, Gregorio et al., 2019; Alves et al., 2020), it is
possible that the synergistic effects of changing seawater chemistry,
temperature, and carbonate chemistry resulted in an even more important role
for marine fishes in the global carbon cycle during Greenhouse intervals than in
modern Icehouse intervals.
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